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Abstract

Present experiments in rats were aimed to verify the hypothesis that glutamatergic neurotransmission and stress hormones play a role in

impairment of hedonic behavior, a sign of depression-like state. On the basis of individual variability in sucrose preference, test rats were

divided into anhedonic and hedonic groups. Anhedonic animals showed higher basal concentrations of adrenocorticotropin and

corticosterone but reduced hormonal responses during novelty stress compared to hedonic animals. Acute administration of citalopram (10

mg/kg ip) induced similar effects in both groups. Corticotropin-releasing hormone (CRH) mRNA levels in hypothalamic paraventricular

nucleus (PVN) were higher in anhedonic rats. Oxytocin (OT) and vasopressin gene expression in the PVN and proopiomelanocortin (POMC)

expression in the anterior pituitary failed to show any significant differences. Gene expression of NR1 receptor subunit of N-methyl-D-

aspartate (NMDA) glutamate receptor in the ventral tegmental area (VTA) was found to be lower in anhedonic rats. In the nucleus accumbens

(NAc) and the hippocampus of anhedonic animals, higher mRNA levels of NR2A subunit compared to those of hedonic rats were detected.

Thus, low sucrose preference is associated with altered HPA axis activity, NMDA receptor subunits and CRH gene expression in selected

brain regions. These mechanisms may operate in the disposition to develop hedonic deficit in some mental disorders.
D 2003 Elsevier Inc. All rights reserved.
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1. Introduction bens (NAc) was found to be altered in low sucrose feeders
Mechanisms and pathways underlying reward processes

have been intensively investigated, and various paradigms

describing animal hedonic behavior have been developed.

Frequently employed approaches for detecting impairment of

hedonic behavior in models of depression (Willner, 1997) or

withdrawal from drug abuse (Lieblich et al., 1991) are based

on the response to a natural reinforcer, namely, intake of

palatable food in rodents.

The intake of sweet substances such as sucrose or saccha-

rine shows high individual variability in rats (Sills and

Vaccarino, 1994; Gosnell et al., 1995). Individual differences

in sucrose intake correlate with differences in response to

drug reinforcers such as amphetamine (DeSousa et al., 2000),

morphine (Sills and Vaccarino, 1998) or cocaine (Gosnell,

2000). Presynaptic dopamine function in the nucleus accum-
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(Sills and Crawley, 1996).

Impaired intake of or preference for sweet substances has

been observed after exposure to stress stimuli. This has been

described for chronic mild stress model of depression and for

exposure to stimuli such as social defeat or inescapable

shocks (Katz, 1982; Willner, 1997; Duncko et al., 2001;

Von Frijtag et al., 2000; Griffiths et al., 1992). Stress-induced

anhedonia was found to be associated with increased corti-

cotropin-releasing hormone (CRH) gene expression in the

hypothalamus (Duncko et al., 2001) and increased CRH

immunoreactivity in the bed nucleus of the stria terminalis

(Stout et al., 2000), indicating that this neuropeptide might

participate in the mechanisms involved.

Glutamate is another regulatory substance suggested to

play a role in the stress response as well as reward processes

(Jezova et al., 1995; Wolf, 1998; Tzschentke, 2001). Hip-

pocampal neurons have a high density of glutamate recep-

tors (Blackstone et al., 1992) and gluco- and mineral-

ocorticoid receptors, which are important in the regulatory

feedback of the hypothalamus–pituitary–adrenocortical ax-

is (Jacobson and Sapolsky, 1991). Glutamate receptor
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antagonists can interfere with stress-induced neuroendocrine

(Jezova et al., 1995; Zelena et al., 1999) as well as

behavioral alterations (Papp and Moryl, 1994). With regard

to brain areas related to reward, a direct interaction between

glutamatergic and dopaminergic transmission was observed

in medial prefrontal cortex (mPFC) and NAc (Pirot et al.,

1996; Smith-Roe and Kelley, 2000). Special attention is

given to dopamine–glutamate interaction in the ventral

tegmental area (VTA), where dopaminergic neurons projec-

ting to the mPFC and NAc are localized (Smith et al., 1996).

Among intact rats, a subgroup of animals demonstrates

spontaneously decreased hedonic behavior, resembling he-

donic impairment observed in stress-induced experimental

depression. The present series of experiments was aimed to

verify the hypotheses that (1) spontaneous anhedonia is

associated with alterations in neuroendocrine response

during stress; (2) neuroendocrine response to an antidepres-

sant treatment is altered in spontaneously anhedonic rats;

and (3) glutamatergic transmission plays a role in hedonic

impairment.
2. Methods

2.1. Animals

Male Sprague–Dawley rats, each weighing 310–470 g,

were used in the present series of experiments. Two weeks

before and during the experiment, the animals were housed

singly in wire cages at a temperature of 23 jC and on a

12:12-h light–dark cycle (0600–1800 h light). Rats had ad

libitum access to water and standard laboratory chow pellets

except the water deprivation before the sucrose preference

test when only chow pellets were available. All animal

experiments were approved by the Animal Care Committee

of the Institute of Experimental Endocrinology, Slovak

Academy of Sciences, and are in compliance with the

European Communities Council Directive 86/609/EEC.

2.2. Assessment of hedonic behavior (sucrose preference

test)

Sucrose preference was measured in four preference tests

to separate the animals into two groups. After overnight water

deprivation, animals were exposed to two bottles containing

tap water and 1% sucrose solution for 3 h. The test was

performed between the 7th and 10th hour of the light phase on

four consecutive days. After 3 h, the volume of consumed

water and sucrose was measured and the percentage of

sucrose solution from the total liquid ingested was calculated.

According to the preference of sucrose solution during 4

days, the rats were divided into two groups. Animals with low

sucrose preference (below 60%) observed on at least 3 days

as well as in average formed the anhedonic (nonpreferring)

group, whereas the other rats were assigned to the hedonic

(preferring) group.
2.3. Cannulations

On the second day after the last preference test, the rats

were anaesthetized with pentobarbital sodium, and polyeth-

ylene cannulas (Intramedic PE 50; Clay Adams, Parsipanny,

NJ, USA) were placed into the tail artery for blood sampling

and into the peritoneal cavity for drug administration

(Experiment 2), as described previously (Jezova et al.,

1995). On the next day, the animals were exposed to a

stress stimulus or pharmacological treatment.

2.4. Experimental procedures

2.4.1. Stress exposure (Experiment 1)

The animals were exposed to a novel environment

(novelty stress). Before the procedure, blood samples were

taken for measurement of basal hormone levels. After-

wards, the animals were transported into another room.

During the whole procedure, the rats remained in their

home cages. Blood samples were obtained from indwelling

tail artery catheters at 0, 5 and 15 min after changing the

room.

2.4.2. Citalopram challenge (Experiment 2)

Rats were acutely treated with the selective serotonin

reuptake inhibitor citalopram. During the whole procedure,

the animals remained undisturbed in their home cages.

After the control blood samples were taken from a tail

artery catheter, the rats were injected with citalopram

(Seropram, Lundbeck, 10 mg/kg) via the intraperitoneal

canulla. Blood samples were taken at 0, 7, 15, 30 and 60

min after the treatment. Rats were decapitated 24 h after

pharmacological treatment and organs were removed for

further analysis.

2.5. Blood and tissue collection

Blood samples were collected from indwelling tail artery

catheters. Blood was sampled into tubes containing EDTA

as anticoagulant, centrifuged at 4 jC, and after separation,

the plasma was stored at � 20 jC until assayed. The brain

regions for in situ hybridization (hypothalamus) were quick-

ly removed, frozen in isopentane at � 30 jC and stored

at� 70 jC. The brain regions for PCR (hippocampus, VTA,

NAc) were removed, frozen in liquid nitrogen and stored

at� 70 jC until assayed.

2.6. Plasma hormone measurements

Plasma ACTH was measured by a radioimmunoassay

using a double antibody technique to separate free and

bound fractions as described previously (Jezova et al.,

1987). Plasma corticosterone levels were analyzed by ra-

dioimmunoassay after dichloromethane extraction of ste-

roids from 10 Al aliquots of plasma (Moncek et al., 2001).

Antibodies for ACTH and corticosterone were kindly pro-

istry and Behavior 76 (2003) 9–16



Fig. 1. Sucrose intake and sucrose preference of hedonic and anhedonic

group of rats during four days of preference test. Data are expressed as

means of 12 (anhedonic group) and 24 (hedonic group) valuesF S.E.M.

Fig. 2. Plasma ACTH and corticosterone concentrations under basal conditions an

(anhedonic group) and 15 (hedonic group) valuesF S.E.M. Statistical significanc
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vided by Prof. G. B. Makara (Budapest) and Prof. C. Oliver

(Marseille), respectively.

2.7. In situ hybridization

Coronal sections of the brain and anterior pituitary (12

Am) were cut in a cryostat, mounted onto polylysine-coated

slides and hybridized as described previously (Skultetyova

et al., 1998). Sequentially matched sections of the hypo-

thalamus at the level of the paraventricular nucleus (PVN)

were hybridized for CRH, arginine–vasopresine (AVP) and

oxytocin (OT) mRNA, whereas sections of the anterior

pituitary were hybridized for proopiomelanocortin (POMC)

mRNA. The probes were kindly provided by Dr. G.

Aguilera, USA. Sections from all animals were processed

in the same hybridization and exposed together to Kodak,

IBI film (New Haven, CT, USA). The autoradiographic

hybridization signal was quantitated using a computerized

image analysis system (Scion Image for Windows 4.0.2),

and the values for each rat were calculated from average of

measurements in two or three matched sections after sub-

tracting the background.
d during exposure to novel environment. Data are expressed as means of 5

e as compared to values in the hedonic group: *P < .05.



Fig. 3. Plasma ACTH and corticosterone concentrations under basal

conditions and after treatment with citalopram (10 mg/kg ip). Data are

expressed as means of seven (anhedonic group) and nine (hedonic group)

valuesF S.E.M.
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2.8. Reverse transcription–polymerase chain reaction

(RT–PCR)

Total RNA from selected brain regions was extracted by a

guanidium thiocyanate-phenol/chloroform method (Chomc-

zynski and Sacchi, 1987). Concentration and purity of RNA

preparations were measured by absorption spectroscopy. The

quality of RNA was judged from the pattern of ribosomal

RNA after gel electrophoresis.

Total cellular RNA (1–2 Ag) was reverse-transcribed to

cDNA and subjected to PCR amplification as described

previously (Schwendt and Jezova, 2001). PCR reactions

were carried out in the presence of two sets of primers,

one for NR1/NR2A/NR2B and other for h-actin. The num-

ber of PCR cycles as well as ratio of NR/h-actin primers was

optimized. PCR products were separated on 2% agarose gel

stained with ethidium bromide and photographed under UV

illumination. Optical density of PCR products was measured

with an EDAS densitometric software (Kodak, USA). In

each sample, the values for the gene of interest were

normalized to housekeeping gene h-actin values to express

relative mRNA levels as arbitrary units.

2.9. Measurements of ion concentrations and plasma

osmolality

Concentrations of natrium, calcium and potassium in

plasma were measured by atomic absorption spectrophotom-

etry (Unicam SP 192). Plasma osmolality was determined by

cryoscopic osmometry (Osmomat 030, Gonatec).

2.10. Open-field test

Open-field behavior was measured in Experiment 2. The

test was performed 1 day before the first sucrose preference

test during the light phase of the light–dark cycle. The

apparatus consisted of a rectangular area of 72� 48 cm

surrounded by a 25-cm high wall. The area was divided into

24 squares of 12� 12 cm. The field was lighted with a 60-

W bulb fixed 50 cm over the field. The rat was placed in

one corner of the open field and the activity during the

subsequent 5 min was recorded by a video camera. Hori-

zontal and vertical locomotor activity was assessed by

measuring the number of squares entered and the number

of rears, respectively.

2.11. Statistical analysis

The data are expressed as meansF S.E.M. Multiple

regression analysis was used to compare sucrose preference

between consecutive sessions. One-way analysis of variance

(ANOVA) was performed for comparisons of basal (pre-

stress) values and gene expression. The effect of stress

exposure or pharmacological treatment was analyzed by

means of two-way ANOVA. This was followed by Tukey

test for pairwise multiple comparisons when appropriate.
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3. Results

3.1. Hedonic behavior

Analysis of sucrose intake and preference data confirmed

the existence of high individual variability in hedonic

behavior, and about 30% of rats were claimed to be anhe-

donic with mean sucrose preference (F = 123.1; P < .001)

and sucrose intake (F = 18.75; P < .001) significantly lower

than that in the hedonic group (Fig. 1). The pattern of

variability was stable during the time and data obtained

during four consecutive days showed significant positive

correlation (b>.43, P < .05).

3.2. Stress hormone release and gene expression

Under basal prestress conditions, anhedonic animals

showed higher plasma concentrations of ACTH (F = 5.88,

P=.028) and corticosterone (F = 6.54, P=.02) than hedonic

animals. The novelty stress was followed by a rise in plasma

ACTH (F = 8.28, P < .001) and corticosterone (F = 17.33,

P < .001) levels with significant differences between the

groups. In anhedonic rats, the stress-induced rise in ACTH
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(F = 9.07, P < .01) as well as corticosterone (F = 4.19,

P=.05) levels was blunted in comparison to that in hedonic

rats (Fig. 2).

Intraperitoneal injection of citalopram resulted in a

significant rise in ACTH (F = 32.7, P < .001) and cortico-

sterone (F = 9.99, P < .001) levels in plasma. No differences

between the groups were observed (Fig. 3).

In situ hybridization in the hypothalamus showed that

levels of mRNA coding for CRH in the PVN were signif-

icantly higher (F = 5.94, P < .05) in the anhedonic than in

the hedonic group of rats. POMC gene expression in the

anterior pituitary failed to show any significant differences.

Similarly, OT and AVP gene expression in the PVN did not

show any significant differences between hedonic and

anhedonic rats (Fig. 4).

3.3. Glutamate receptors gene expression

Evaluation of N-methyl-D-aspartate (NMDA) receptor

subunit gene expression in different brain regions revealed

selective differences between the groups (Fig. 5). In the

VTA, levels of mRNA coding for NR1 subunit of the

NMDA receptor were higher (F = 58.02, P < .001) in he-

donic than in anhedonic rats. Gene expression of NR2A and

NR2B subunits did not show significant difference between
Fig. 5. Gene expression of NMDA receptor subunits in the VTA, NAc and

hippocampus in hedonic and anhedonic rats. Data are expressed as means

of four (anhedonic group) and five (hedonic group) valuesF S.E.M.

Statistical significance as compared to values in the hedonic group:

*P < .05, **P < .01.

Fig. 4. Corticoliberine (CRH), AVP and OT mRNA levels in the

hypothalamic PVN and POMC mRNA levels in the anterior pituitary in

hedonic and anhedonic rats. Data are expressed as means of seven

(anhedonic group) and nine (hedonic group) valuesF S.E.M. Statistical

significance as compared to values in the hedonic group: *P < .05.
the groups. In the NAc, gene expression of NR2A subunit

was significantly higher (F = 17.33, P < .01) in anhedonic

than that in hedonic rats. Similarly, in the hippocampus,

gene expression of NR2A subunit was significantly higher

(F = 11.78, P < .05) in anhedonic when compared to those in

hedonic rats, while no differences were found for NR1 and

NR2B subunits.

3.4. Behavioral and physiological parameters

Horizontal and vertical locomotor activity during the

open-field test failed to show any significant differences

between the hedonic and anhedonic groups (data not

shown). Evaluation of physiological parameters such as

body weight, hematocrite, plasma osmolality and plasma

natrium, potassium and calcium levels revealed no signifi-

cant differences between the groups (data not shown).
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4. Discussion

The present series of experiments document that hedonic

deficit, defined as low preference for 1% sucrose solution, is

associated with altered CRH and glutamate receptor gene

expression in brain regions related to stress response and

reward. Furthermore, altered HPA axis activity in response

to a stress stimulus but not to an antidepressant treatment

has been observed in anhedonic rats.

The main alterations of HPA axis activity observed in

this study are blunted corticosterone and ACTH responses

to novelty stress in anhedonic animals. These data are

consistent with behavioral changes described during expo-

sure to elevated plus maze in low sucrose feeders (Desousa

et al., 1998). Moreover, our findings are consistent with data

from some, though scarce, clinical studies that show blunted

stress response in depressed patients (Kathol et al., 1992;

Young et al., 2000). Furthermore, higher basal, prestress

corticosterone and ACTH levels observed in anhedonic

animals resemble those described in experimental models

(Ayensu et al., 1995) and patients with depression (Holsboer

and Barden, 1996).

The analysis of gene expression of hypothalamic regu-

latory factors revealed significantly enhanced levels of

mRNA coding for CRH in anhedonic animals, which is in

agreement with alterations in hypothalamic CRH gene

expression reported in experimental depression (Duncko et

al., 2001). Thus, in addition to the hedonic impairment,

anhedonic rats display neuroendocrine changes similar to

those observed in experimental as well as clinical depres-

sion. It could be argued that presented changes in neuro-

peptide gene expression were due to different responses to

citalopram treatment made 24 h earlier. However, no

changes in parvicellular CRH gene expression were ob-

served 240 min or 24 h following single or repeated

citalopram treatment (Jensen et al., 1999; Moncek et al.,

2003). Thus, we suggest that the data represent preexisting

differences in hedonic and anhedonic rats.

Two other hypothalamic regulatory factors, OT and AVP,

have been suggested to play a role in the pathogenesis of

affective disorders (Purba et al., 1996; Uvnas-Moberg et al.,

1999). The present results do not support the involvement of

magnocellular OT and AVP in hedonic behavior; however,

the possible role of these factors in symptoms other than

anhedonia remains to be elucidated.

Serotonergic transmission is thought to play a crucial role

in the development of depressive symptoms (Charney,

1998). In the present study, the serotoninergic regulation of

HPA axis function, as examined by a challenge with selec-

tive serotonin reuptake inhibitor citalopram, failed to be

altered in rats with hedonic deficit. As the surgery associated

with tail artery cannulation is known to induce transient

activation of stress hormone secretion, it might be expected

to interfere with citalopram effects. However, the basal

hormone levels measured 24 h after cannulation were in

normal range, and we have recently demonstrated that three
different chronic stress paradigms do not modify hormonal

responses to citalopram treatment (Moncek et al., 2003).

Thus, serotonergic transmission in the hypothalamus does

not seem to be involved in this behavioral alteration. This

finding is in discordance with the suggested role of serotonin

in the pathogenesis of depression. However, there are dis-

crepancies within the monoaminergic hypothesis of depres-

sion, and other factors were suggested to participate in

clinical effects of monoaminergic antidepressants (Bouron

and Chatton, 1999; Jezova and Duncko, 2002).

Along with other neurotransmitters, glutamate is sug-

gested to play a role in the pathogenesis of depressive

symptoms (Papp and Moryl, 1994; Skolnick et al., 2001).

Intriguing finding of the present study is that low sucrose

preference is associated with altered gene expression of

NMDA receptor subunits in the VTA, NAc and hippocam-

pus. Glutamatergic transmission in the VTA is crucial for

the regulation of mesolimbic and mesocortical dopaminer-

gic pathways, which represent the neurobiological substrate

of reward (Tzschentke, 2001). Accordingly, treatment with

addictive drugs, as well as intracranial self-stimulation, was

found to be associated with altered gene expression of

glutamate receptors in the VTA (Fitzgerald et al., 1996;

Carlezon et al., 2001). Thus, down-regulation of NR1

mRNA levels in the VTA could account not only for

decreased excitability of VTA dopaminergic neurons but

also for hypofunction of reward mechanisms. In the NAc,

the increase of NR2A mRNA levels in anhedonic group

might result in NR2A-enriched receptors. It has been

documented that increased proportion of NR2A to NR1

and NR2B subunits results in restricted Ca2+ influx into

neurons (Cull-Candy et al., 2001). Altered subunit compo-

sition of NMDA receptor complex may contribute to sub-

sensitivity of NAc neurons to glutamate stimulation and to

altered function of reward system.

The analysis of glutamate receptor gene expression in the

hippocampus revealed increased gene expression of NR2A

subunit of NMDA receptor in anhedonic rats. Hippocampal

structures are involved in many physiological functions

including the regulation of stress response (Jacobson and

Sapolsky, 1991; Schwendt and Jezova, 2000). Some studies

have described that chronic alterations of corticosterone

levels or exposure to stress influenced specifically NR2A

and NR2B subunit expression in the hippocampus (Yoneda

et al., 1994; Weiland et al., 1997). Furthermore, hippocam-

pus is known to participate in the regulation of appetitive

behaviors (Tracy et al., 2001). Alterations in hippocampal

glutamatergic transmission are hypothesized to occur in

learned helplessness model of depression (Shors et al.,

1989) and after treatment with antidepressants (Zahorodna

and Bijak, 1999). The presented changes in glutamate

receptor gene expression should be considered in relevance

to neuroendocrine and behavioral alterations observed in

anhedonic rats.

As the sucrose preference testing was associated with

water deprivation, it may be argued that the neurochemical
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and neuroendocrine differences between hedonic and anhe-

donic rats could be due to different physiological responses

to repeated water deprivation. However, the lack of differ-

ence in plasma ion concentrations, plasma osmolality and

hematocrit indicates that this is not the case. Moreover,

comparable gene expression of paraventricular AVP in both

groups of rats doubt the possibility that observed individual

differences in sucrose intake might be due to altered water

and electrolyte homeostasis.

Decreased locomotor or exploratory activity was

reported to occur in animal models of depression. Similar

alterations in positively motivated behavior are hypothe-

sized in rats with low sucrose intake (Desousa et al., 1998).

Indeed, blunted locomotor response to a psychostimulant

treatment in anhedonic animals has been described (Sills

and Vaccarino, 1994), but no such differences were reported

in spontaneous locomotor or exploratory activity. In the

present study, we found no changes in locomotor activity

during the open-field test.

In conclusion, we suggest that alterations in stress re-

sponse and glutamatergic transmission are related to low

sucrose preference in rats. Our data indicate that anhedonic

rats display behavioral and neurochemical changes similar to

those observed in experimental depression and support the

hypothesis that the hedonic deficit described is related to a

predisposition to develop depressive-like behavior. Neurobi-

ological changes observed may belong to the factors respon-

sible for the predisposition to depressive states in humans.
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